User-Managed Access (UMA) 101

Eve Maler, Kantara Initiative UMA Work Group chair

@xmlglrrl | @UMAWG | tinyurl.com/umawg

IIWXXVIII | 30 Apr 2019
Topics

• Overview
• UMA in action
• The technical big picture
• The UMA grant
• Federated authorization
• Authorization assessment
• Privacy and business-legal-technical implications
Overview

What UMA adds to OAuth
OAuth enables constrained delegation of access to apps

Benefits:
• Flexible, clever API security framework
• Alice can agree to app connections and also revoke them
OpenID Connect does modern-day federation

Benefits:
- **Layers** identity/authentication tech with delegation/authorization tech
- **Translates** federated identity for mobile and the API economy

Diagram:
- Resource owner
- Authorization server
- Resource server
- Client
- Federation user
- Relying party
- Identity provider (OP)
- Standard UserInfo endpoint
To OAuth, UMA adds cross-party sharing...

Benefits:
- **Secure** delegation
- **Alice can be absent** when Bob attempts access
- **Helpful error handling** for client applications
...in a wide ecosystem...

Benefits:
- Alice controls trust between a service that hosts her resources and a service that authorizes access to them.
...of resource hosts

Benefits:
- Resource hosts can outsource authorization management – and liability – to a specialist service.
- Alice can manage sharing at a centralizable service.
- Bob can revoke his access to Alice’s resources.

Diagram: (Diagram shows the flow of interactions between resource owners, requesting parties, and resource servers, with labeled processes: Authorization server, Resource server, and Claim interaction.)
UMA user experience opportunities

Resource owner

- Ahead of time: Share
- Anytime: Monitor, Withdraw
- At run time: Opt in
- After the fact: Approve

Confidential App is requesting permission to access:
- Access and change your email contacts

Allow Access | No thanks
Benefits for service providers: a summary

True secure delegation; no password sharing

Scale permissioning through self-service

API-first protection strategy

Foster compliance through standards
Benefits for individuals: a summary

Choice in sharing with other parties

Convenient sharing/approval with no outside influence

Centralizable monitoring and management

Control of who/what/how at a fine grain
Typical use cases

• Alice to Bob (person to person):
 • Patient-directed health data/device sharing
 • Discovering/aggregating pension accounts and sharing access to financial advisors
 • Connected car data and car sharing

• Enterprise to Alice (initial RO is an organization):
 • Enterprise API access management
 • Access delegation between employees

• Alice to Alice (person to self/app):
 • Proactive policy-based control of app connections

• Profiled or referenced by:
 • OpenID Foundation HEART Working Group
 • UK Department for Work and Pensions
 • OpenMedReady Alliance
Known implementations
(more detail at tinyurl.com/umawg)

• ForgeRock – financial, healthcare, IoT, G2C...
• Gluu (open source) – API protection, enterprise, G2C...
• ShareMedData – healthcare
• HIE of One / Trustee (open source) – healthcare
• IDENTOS – healthcare, G2C
• Pauldron (open source) – healthcare
• RedHat Keycloak (open source) – API protection, enterprise, IoT...
• WSO2 (open source) – enterprise...
UMA in a nutshell

- Developed at **Kantara Initiative**
 - V1 done in 2015, V2 done in 2018
- Leverages existing **open standards**
 - OAuth2
 - OpenID Connect and SAML (optional but popular)
- Specs **contributed** to IETF OAuth WG in Feb
- Profiled by multiple **industry sectors**
 - Financial, healthcare
- UMA business model effort supports **legal licensing** for personal digital assets
 - Example: Mother (guardian) manages sharing for child (data subject); child “ages in” to consent and starts to manage sharing herself
- Some 1:1 **interop testing** done; more soon?
UMA in action

A couple of sample implementations
Patient Alice creates a policy to share with Dr. Erica, she selects her sharing preferences, and presses SHARE.

Patient sharing is easy!

See HEART webinar recording from 23 Apr 2019.
ForgeRock Identity Platform
Profile and Privacy Management Dashboard – also Access Management module
The technical big picture

A technical summary of the two UMA 2.0 specifications and their tokens
The marvelous spiral of delegated sharing, squared

1. The **UMA grant of OAuth** enables Alice-to-Bob delegation

2. **UMA standardized an API for federated authorization** at the AS to make it centralizable

3. There are **nicknames** for enhanced and new tokens to keep them straight
The UMA extension grant adds...

docs.kantarainitiative.org/uma/wg/rec-oauth-uma-grant-2.0.html

• **Party-to-party**: Resource owner authorizes protected-resource access to clients used by requesting parties

• **Asynchronous**: Resource owner interactions are asynchronous with respect to the authorization grant

• **Policies**: Resource owner can configure an AS with rules (policy conditions) for the grant of access, vs. just authorize/deny

 • Such configurations are outside UMA’s scope
UMA federated authorization adds...

docs.kantarainitiative.org/uma/wg/rec-oauth-uma-federated-authz-2.0.html

• **1-to-n:** Multiple RS’s in different domains can use an AS in another domain
 • “Protection API” automates resource protection
 • Enables resource owner to monitor and control grant rules from one place

• **Scope-grained control:** Grants can increase/decrease by resource and scope

• **Resources and scopes:** RS registers resource details at the AS to manage their protection
The UMA grant

A walkthrough of the UMA extension grant of OAuth2 and permission tickets
The UMA extension grant flow and its options

The AS is acting as an **agent** for an absent RO

The client’s first resource request is **tokenless**

The RS provides a permission ticket and allows AS discovery

There are two **claims collection options** for meeting policy

Authorization assessment and token issuance has **guardrails**

RPTs can be **upgraded, revoked, introspected, and refreshed**

[Diagram of the UMA extension grant flow]

1. **Requesting party (RqP)**
2. **Client (C)**
3. **Resource server (RS)**
4. **Authorization server (AS)**
5. **Resource owner (RO)**

Flow: Requesting party (RqP) makes a resource request (no access token). The client’s first resource request is tokenless. The RS provides a permission ticket and allows AS discovery. There are two claims collection options for meeting policy. Authorization assessment and token issuance has guardrails. RPTs can be upgraded, revoked, introspected, and refreshed.
The permission ticket: how you start building a bridge of trust

• **Binds client, RS, and AS:** Every entity may be *loosely coupled*; the whole flow needs to be bound
 • It’s like an overarching state parameter or “ticket-getting ticket”
 • Or maybe even a bit like an authorization code

• **Refreshed for security:** The client can **retry** RPT requests after non-fatal AS errors, using either claims collection option of the grant flow
 • The AS **refreshes** the permission ticket when responding with such errors
Pushed claims scenario: for wide-ish ecosystems

The AS is the requesting party’s IdP and the client is the RP

More detail on the RS’s initial response to the client

The client pushes its existing ID token to the token endpoint

The AS is in the primary audience for this token

Somewhat resembles SSO or the OAuth assertion grant, where a token of expected type and contents is “turned in”
Interactive claims gathering scenario: for wide ecosystems

A claims interaction endpoint must have been declared in the discovery document to allow this flow.

The AS mediates gathering of claims from any source.

A key “metaclaim” to think about: consent to persist claims.

A PCT potentially enables a better RqP experience next time; the AS can then re-assess using claims on hand.

Resembles the authorization code grant, but can apply to non-unique identities and is repeatable and “buildable”
Federated authorization
A walkthrough of UMA federated authorization and its protection API
A new perspective on the UMA grant

How does the AS know when to start protecting resources?

How does the RS know what ticket the AS is associating with the RS’s recommended permissions?

Is there anything special about token introspection?

Let’s standardize an interface at the AS for these jobs
The protection API: how you *federate* authorization

- **RS registers resources:** This is required for an AS to be “on the job”
 - Scopes can differ per resource
 - Resource and scope metadata assist with policy setting interfaces
- **RS chooses permissions:** The RS *interprets* the client’s tokenless resource request and *requests* permissions from the AS
 - The AS then issues the initial permission ticket
- **RS can introspect the RPT:** UMA *enhances* the token introspection response object
- **RO controls AS-RS trust:** The protection API is **OAuth-protected**
 - The resource owner authorizes the scope *uma_protection*
 - The issued token is called the **PAT**
The resource registration endpoint

Registering a resource puts it under protection

Setting policies can be done anytime after creation

Deregistering a resource removes it from protection

UMA Federated Authorization Resource Registration Endpoint

- **resource owner (RO)**
 - Create resource (POST resource description document)
 - 201 Created with resource ID
 - Set policy conditions
 - Read (GET) with resource ID
 - 200 OK with resource description document
 - Update (PUT resource description document) with resource ID
 - 200 OK with resource ID
 - List (GET)
 - 200 OK with list of resource IDs
 - Delete (DELETE) with resource ID
 - 200 OK or 204 with No Content

- **resource server (RS)**

- **authorization server (AS)**

- **resource reg at AS**
Resource and scope registration

- The RS is authoritative for what its resource boundaries are
 - It registers them as JSON-based descriptions
- There is a resource “type” parameter
- Scopes can be simple strings or URIs that point to description documents

Create request:

```plaintext
POST /rreg/ HTTP/1.1 Content-Type: application/json
Authorization: Bearer MHg3OUZEQkZBMjcx
...
{
  "resource_scopes": [
    "patient/*.read"
  ],
  "icon_uri": "http://www.example.com/icons/device23",
  "name": "Awesome Medical Device Model 23",
  "type": "https://www.hl7.org/fhir/observation.html"
}
```

Response:

```
HTTP/1.1 201 Created
Content-Type: application/json
Location: /rreg/rsrcl
...
{
  "_id": "rsrcl"
}
```
The permission endpoint

The RS interprets the client’s tokenless (or insufficient-token) resource request

The RS must be able to tell from the client’s request context which RO and AS were meant

Request:
POST /perm/ HTTP/1.1
Content-Type: application/json
Host: as.example.com
Authorization: Bearer MHg3OUZEQkZBMjcx ...

{ "resource_id":"rsrc1",
 "resource_scopes": [
 "patient/*.read"
]
}

Response:
HTTP/1.1 201 Created
Content-Type: application/json

{ "Ticket":"016f84e8-f9b9-11e0-bd6f-0021cc6004de"
}
The token introspection endpoint

UMA enhances the token introspection response object

A permissions claim is added, with resource ID-bound scopes

Request:
POST /introspect HTTP/1.1
Host: as.example.com
Authorization: Bearer MHg3OUZEQkZBMjcx
... token=mF_9.B5f-4.1JqM

Response:
HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: no-store
...
{
 "active":true,
 "exp":1256953732,
 "iat":1256912345,
 "permissions":[
 {
 "resource_id":"rsrc1",
 "resource_scopes":[
 "patient/*.*read"
],
 "exp":1256953732
 }
]
}
Authorization assessment

The UMA guardrails around issuing permissions
Authorization assessment: how the AS adheres to the RO’s wishes in the larger context

The client can request scopes at the token endpoint, but must have pre-registered them with the AS for it to work.

The AS treats the scopes in this intersection as matching any available scope associated with a resource in the ticket.

Permissions associated with the ticket can add to total requested scopes.

If authorization assessment results in only a subset of client-desired scopes, the AS can choose to error.

RequestedScopes = C U (A \cap B)
Privacy and “BLT” implications
The bigger business-legal-technical picture
Relevance for privacy beyond “empowered flows”

• Features relevant to privacy regulations (GDPR, CCPA, OB, PSD2, CDR, HHS ONC info blocking rules...):
 • Asynchronous resource owner control of grants
 • Enabling resource owner to monitor and manage grants from a “dashboard”
 • Auditability of grants (consent) and PAT-authorized AS-RS interactions

• Work is well along on an UMA business model
 • Modeling real-life data-sharing relationships and legal devices
 • Technical artifacts are mapped to devices
 • Goal: tear down artifacts and build up new ones in response to state changes
(Most) legal relationships in the business model

- **Resource Rights Administrator**
 - Resource owner
 - Delegates-perm-authority-to

- **Authorization Server Operator**
 - Authorization server
 - (Agency Contract)
 - Delegates-mgmt-to

- **Resource Server Operator**
 - Resource server
 - (Access Contract)
 - Permits-knowing-claims

- **Requesting Agent**
 - Requesting party
 - Licenses-perm-getting-to
 - Delegates-seek-authority-to

- **Client Operator**
 - Client
 - Licenses-perm-getting-to

- **(Agency Contract)**
UMA implications...

...for the client
• Simpler next-step handling at every point

...for the RS
• Standardize management of protected resources

...for the RO
• Control data sharing/device control
• Truly delegate access to other parties using clients

...for the AS
• Offer interoperable authorization services
• Don’t have to touch data to protect it

...for the RqP
• Seek access to a protected resource as oneself

...for the client operator
• Distinguish identities of resource owners from mere users

...for the resource server operator
• Externalize authorization while still owning API/scopes

...for the resource rights admin
• Manage sharing on behalf of data subjects, not just for oneself

...for the authorization server operator
• Prove what interactions took place or didn’t

...for the requesting agent
• Revoke access (or request it) to someone else’s assets
Join us!
Thank you!
Questions?

Eve Maler, Kantara Initiative UMA Work Group chair
@xmlgrrl | @UMAWG | tinyurl.com/umawg
IIWXXVIII | 30 Apr 2019